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Abstract: We test the holographic conjecture of brane black holes: that a full classical 5D

solution will correspond to a quantum corrected 4D black hole. Using the Schwarzschild-

AdS black string, we compare the braneworld back reaction at strong coupling with the

calculation of the quantum stress tensor on Schwarzschild-AdS4 at weak coupling. The

two calculations give different results and provide evidence that the stress tensor at strong

coupling is indeed different to the weak coupling calculations, and hence does not conform

to our notion of a quantum corrected black hole. We comment on the implications for an

asymptotically flat black hole.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence.

c© SISSA 2008

mailto:r.a.w.gregory@durham.ac.uk
mailto:s.f.ross@durham.ac.uk
mailto:robin.zegers@durham.ac.uk
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
8
)
0
2
9

Contents

1. Introduction 1

2. The Karch-Randall black string 2

3. Corrections to the braneworld black hole 4

4. Discussion 7

1. Introduction

In exploring consequences of any quantum theory of gravity it is the nonperturbative ques-

tions that give the most fascinating opportunities for unexpected physical consequences.

Black holes in particular have provided an extremely fruitful background for testing our

understanding of quantum effects in gravity. While it has been known for some time that

black holes emit Hawking radiation [1], the consequences of that radiation remain unproven.

String theory has made huge advances in our understanding of black hole thermodynam-

ics, but as yet is unable to access the highly non-supersymmetric Schwarzschild black hole.

Clearly, any progress in understanding this physically relevant case would be extremely

important.

Braneworlds are a framework in which the existence of large extra dimensions is al-

lowed via a mechanism which confines standard model physics to a slice in spacetime, thus

introducing potential hierarchies in interactions, as well as modifications of gravity at small

(and sometimes large) scales. The brane typically warps the bulk spacetime, and in the

Randall-Sundrum (RS) model [2, 3], is a slice through five dimensional anti-de Sitter space-

time. The RS model makes specific predictions for cosmology and the LHC dependent on

the 5D AdS curvature scale. But the RS model has another interesting implication: by

taking the near horizon limit of a stack of D3-branes, the RS model can be thought of

as cutting off the spacetime outside the D-branes; the AdS curvature of the RS bulk is

therefore given rather precisely in terms of the D3 brane charge and the string scale. Thus,

from AdS/CFT [4], we might expect a parallel between classical branworld gravity, and

quantum corrections on the brane.

There have been several attempts to utilize this relation, in the context of cosmol-

ogy [5] and linearized gravity [6], for which the evidence is concrete and robust, and in the

case of brane black holes [7, 8], for which the evidence is more circumspect, and open to

criticism [9]. Briefly, a cosmological brane is a slice of a bulk black hole spacetime with the

bulk black hole giving rise to a radiation source in the brane cosmology [10]. Comparing

the temperature of this radiation to that of a field theory at finite Hawking temperature
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shows that these agree up to a factor [5]. For linearized gravity, the classical corrections

to the RS brane can be computed from the Lichnerowicz operator, and there are specific

1/r3 corrections to the Newtonian potential [3]. These agree precisely with the 1-loop

corrections to the graviton propagator in quantum gravity [6]. Given these results, it is

tempting to suppose that a classical braneworld black hole solution will correspond to a

quantum corrected black hole, however for this we need an actual solution!

The first attempt to find a braneworld black hole replaced the Minkowski metric in

the RS model with a Schwarzschild metric, giving rise to an AdS black string [11]. This

string however suffers from a classical instability [12], so it is not the correct bulk solution

to describe a brane black hole. This instability might correspond to the thermodynamic

instability of the Schwarzschild black hole via Hawking radiation, although the timescales

and nature of the two instabilities seem to be rather different (see [13]).

This dual picture led to the conjecture that any nonsingular braneworld black hole

solution must be time dependent [7, 8, 15]. However, the original argument for this relied on

weak coupling calculations, whereas the bulk black hole solution corresponds to a strongly

coupled field theory on the brane, so its behaviour may be very different. It was argued

in [9] that the quantum-corrected dual description might be consistent with the existence

of static localised black hole solutions. It is difficult to construct such solutions explicitly as

the system of equations has too much freedom to be completely classified analytically [14],

and the system is very numerically sensitive. So far, it has been possible to construct

static nonsingular black hole solutions numerically, although these are for small masses

. O(ℓ−1) [16].

Here we support the point of view of [9] by looking at a slightly modified RS brane

- detuning the brane tension to subcritical, giving an anti-de Sitter, or Karch Randall

(KR) [17] braneworld. We consider two KR branes which cross the AdS5 bulk, both of

positive tension, which intersect only formally on the AdS boundary. There are two types

of bulk solution which correspond to a localised black hole from the braneworld point of

view: a black string stretching between the two branes, or a bulk black hole which is

localised near one brane and does not extend across the whole of the extra dimension. We

focus on the black string, for which an explicit solution is known which is stable for a range

of mass parameters. In the regime where it is stable, we would expect this black string

to be the correct solution describing a brane black hole, and even when it is unstable, the

bulk solution is regular, so it should have a boundary CFT description. We explore the

description of this black string as a quantum-corrected black hole in the brane, and find

that a consistent interpretation exists, but it involves surprising behaviour.

2. The Karch-Randall black string

We start by writing 5D AdS in a general form as a foliation over a 4-dimensional spacetime:

g = Ω2(uRS)[du2
RS + g̃], (2.1)

where g̃ is a general 4-dimensional metric. The RS model takes g̃ to be Minkowski space-

time, with ΩRS = ℓ/uRS, and ℓ =
√

−6/Λ is the 5D AdS length. The AdS boundary is

– 2 –
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Figure 1: A sketch of the KR black string. The blue circle is the AdS boundary, which is excised

from the braneworld spacetime. The string goes through the AdS bulk between the two KR branes.

Because the string has finite proper length relative to its mass, it can be stable for sufficiently large

mass.

at uRS = 0, and the RS brane is at constant uRS. To construct a KR brane, first make

a simple change of coordinates: uRS = r cos θ. The AdS boundary now corresponds to

θ = ±π/2, and

g =
ℓ2

cos2(θ)

[

dθ2 +
g̃

ℓ̃2

]

(2.2)

where g̃ is now an AdS4 geometry with length scale ℓ̃ = ℓ sec θ0. Now introduce a brane at

θ = θ0. By Israel’s equations, this brane has positive tension,

σKR =
6 sin θ0

8πG5ℓ
(2.3)

which is less than the critical RS brane tension σRS = 6
8πG5ℓ . This is a KR brane [17], and

with a single brane is analogous to the one brane Randall-Sundrum model [3], however,

unlike the RS model, we can include a second positive tension KR brane in the bulk at

θ = −θ0, which actually has the same tension as the first brane. Thus, unlike the original

two brane RS model [2], in which the second brane had negative tension, and corresponded

to a CFT cutoff in the UV and IR, the KR set-up has two positive tension branes, and

thus corresponds to two CFT’s cut off in the UV. The distance between these two branes

is finite:

D =

∫ θ0

−θ0

ℓ sec θdθ = 2ℓ ln

(

ℓ̃

ℓ
+

4πG5σKRℓ̃

6

)

. (2.4)

Thus the graviton spectrum consists of a zero mode of 4D gravity, a radion, and a discrete

tower of KK states, with masses given by the appropriate brane boundary conditions.
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Now let g̃ be the metric of a Schwarzschild-AdS4 black hole [18]:

g̃ = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + sin2 θdφ2), (2.5)

with

V (r) = 1 +
r2

ℓ̃2
−

2G4M

r
. (2.6)

This has a horizon at r+ satisfying V (r+) = 0. This black string stretches between the two

branes (see figure 1), and analogous to the RS black string, we expect that it will exhibit

an instability. This system was analysed in the absence of branes by [19], who found

stability for r+ & O(ℓ̃). There are some technical issues with divergence of transverse

eigenfunctions in their analysis, however, we have checked that their conclusion is correct

in the presence of the branes. Thus, for large r+/ℓ̃, the black string is a suitable brane

plus bulk solution for a KR braneworld black hole. For small r+/ℓ̃ (and in particular, in

the limit as the brane cosmological constant goes to zero), this solution is unstable, and

should decay into a localised solution, which would not be of the simple warped product

form we have considered.1

3. Corrections to the braneworld black hole

We therefore have (for large mass) a stable classical bulk solution which from the point of

view of the brane is exactly a Schwarzschild-AdS4 black hole. We would like to understand

how this is reconciled with the viewpoint of [7, 8], that the bulk geometry describes, from

the dual brane/CFT point of view, a quantum-corrected black hole. One would have

expected in general that the back-reaction of the quantum stress tensor would change the

form of the geometry. There is a non-zero O(N2) stress tensor for the N = 4 SYM theory

on this background, as can be seen by considering the conformal anomaly, which is

〈T µ
µ〉 =

N2 − 1

32π2

(

RµνRµν −
1

3
R2

)

. (3.1)

On an Einstein space-time such as Schwarzschild-AdS4, we thus have

〈T µ
µ〉 = −

N2 − 1

24π2
Λ̃2 = −

3(N2 − 1)

8π2ℓ̃4
. (3.2)

So the stress tensor should produce a back-reaction whose effects would be visible at the

order we are considering. Why do we see simply a Schwarzschild-AdS4 geometry?

The solution is that, as in the discussion of the pure Schwarzschild black string in [9],

the form of the stress tensor we predict for the strongly-coupled CFT dual to the bulk

1Note, in [20], a different instability for foliations of AdS in terms of compact negatively curved spaces

was discussed. From the braneworld point of view, this instability corresponds to a scalar tachyonic

mode. This mode is also present in the solutions we consider here; however, it satisfies the Breitenlohner-

Freedman bound for the brane spacetime, so in the present context, where we are considering a non-compact

braneworld spacetime, it does not imply an instability so long as we impose the usual asymptotically AdS4

boundary conditions on the braneworld spacetime.
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geometry is very special. We can evaluate the full stress tensor for the boundary field

theory by using the bulk spacetime and applying the boundary stress tensor/holographic

renormalization approach of [21, 22]. In this approach, we expand the bulk metric as

g =
dz2

z2
+

1

z2
[g̃(0) + z2g̃(2) + z4g̃(4) + . . .] , (3.3)

and then the stress tensor can be evaluated as [22]

〈Tµν〉 =
ℓ3

4πG5

[

g̃(4)µν +
1

8

(

tr(g̃2
(2)) −

(

tr g̃(2)

)2
)

g̃(0)µν

−
1

2

(

g̃2
(2)

)

µν
+

1

4
g̃(2)µν tr g̃(2)

]

(3.4)

(where we have ignored some logarithmic terms in the generic expression which will not

contribute in our case). In our case, the metric (2.2) can be brought into the appropriate

form by writing

sec θ =
4ℓ̃2 + z2

4ℓ̃z
(3.5)

so that

g =
ℓ2

z2

[

dz2 +

(

1 +
z2

2ℓ̃2
+

z4

16ℓ̃4

)

g̃

]

. (3.6)

Thus we find

〈Tµν〉 = −
3ℓ3

64πG5ℓ̃4
g̃µν = −

3N2
~

32π2ℓ̃4
g̃µν , (3.7)

where we use ~G5 = ~G10

π3ℓ5
= πℓ3

2N2 in the last step. The key point is that this stress tensor is

proportional to the metric on the boundary; the effects of the back-reaction will therefore

be solely to renormalize the four-dimensional cosmological constant. This special form for

the stress tensor arises directly from the foliated form of the five-dimensional metric. This

is also consistent with the arguments of [9] for the case Λ̃ = 0: as ℓ̃ → ∞, 〈Tµν〉 → 0, so

this leading O(N2) part of the quantum stress tensor vanishes in this limit.

It is interesting to compare this with the fully nonlinear classical result obtained at

arbitrary cut-off using the Israel formalism. Here, the brane and bulk metric are com-

pletely specified, and the correction to the brane energy momentum is interpreted via the

discrepancy between this solution and the conventional 4D Einstein equation.

Note that we can interpret the KR brane as the critical RS brane with a stress tensor

source on the brane corresponding to a negative “cosmological constant” λ:

6 sin θ0

8πG5ℓ
=

6

8πG5ℓ
+ λ (3.8)

On the other hand, the actual 4D cosmological constant is given by

Λ4 = −
3

ℓ̃2
= 8πG4λeff . (3.9)
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Note that in this case, the 4D gravitational constant is not labelled as GN , since the relation

between the brane and bulk gravitational constant is dependent on the brane tension, and

is not given by the standard RS relation in terms of ℓ [23]:

G4 =
4πG5σKR

3
G5 . (3.10)

From the definition of ℓ̃ and (3.8), (3.10), the value of the bare tension is:

λ =
3

4πG4ℓ2ℓ̃2

(

ℓ̃2 − ℓ2 − ℓ̃

√

ℓ̃2 − ℓ2

)

(3.11)

Therefore, since the ‘expected’ value of the cosmological constant is 8πG4λ, we can compute

the correction to the brane energy momentum as:

〈T µ
ν 〉 =

8πG4λ − 3/ℓ̃2

8πG4
δµ
ν =

3(2ℓ̃2 − ℓ2 − 2ℓ̃
√

ℓ̃2 − ℓ2)

8πG5ℓℓ̃
√

ℓ̃2 − ℓ2
δµ
ν (3.12)

This is the precise (classical) braneworld result. We can obtain the holographic renor-

malization result (3.7), by taking the limit as the brane approaches the boundary, or by

approaching the critical RS limit λ → 0, ℓ̃ → ∞:

〈T µ
ν 〉 =

3ℓ3

32πG5 ℓ̃4
δµ
ν , (3.13)

which agrees with (3.7) up to the expected factor of two which arises from the braneworld

set-up having two copies of the bulk, one on each side of the brane.

Thus, the bulk solution can be consistently interpreted as a quantum-corrected metric

in the dual boundary theory. However, the form of the boundary stress tensor obtained by

this argument is very different from what we would expect. Our result is independent of the

black hole temperature, whereas we would have expected a component corresponding to a

thermal plasma of CFT degrees of freedom outside the black hole. The form of a thermal

plasma in the strong coupling CFT is known from AdS/CFT [24]. No such contribution

can be seen in (3.7).

To see the contrast with the expected behaviour in detail, is instructive to compare

the above holographic calculation to a weak-coupling calculation of the stress tensor of

a quantum field on Schwarzschild-AdS4. We will consider a conformally coupled scalar

field, where an approximate calculation of the quantum stress tensor on Einstein spaces

by Page [25] can be applied. In Page’s approach, we analytically continue to Euclidean

signature and consider the conformally related optical metric, gopt = Ω−2g̃ with Ω =

V (r)−1/2, where V (r) is given in (2.6). In the Euclidean space, to ensure smoothness at

the horizon, τ is periodically identified with period τ ∼ τ + 1/T , where the temperature

T = V ′(r+)/4π = (ℓ̃2 + 3r2
+)(4πℓ̃2). We also write the mass appearing in (2.6) in terms of

r+ as G4M = r+

(

1 + r2
+ℓ̃−2

)

/2. Page shows that in a Gaussian approximation to the heat

kernel [26], the stress tensor of the scalar field in this optical metric can be approximated

by 〈T µ
ν〉opt = π2

90 T 4(δµ
ν − 4δµ

0δ
0
ν). The stress tensor in the physical metric can then be

determined using the properties of the field under a conformal transformation.

– 6 –
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Applying this to the Schwarzschild-AdS4 geometry, we find

〈T µ
ν〉 =

π2

90(4πr+)4
1

r6

[

T (1)(r)
(

δµ
ν − 4δµ

0δ
0
ν

)

+ 3T (2)(r)δµ
0δ

0
ν + T (3)(r)δµ

1δ
1
ν

]

,

(3.14)

where we have set

T (1)(r) =

(

r − r+

rV (r)

)2 [
(

r2 + 2rr+ + 3r2
+

) (

r4 + 4rr3
+ − 3r4

+

)

+
4r2

+

ℓ̃2

(

3r6 + 6r5r+ + 9r4r2
+ + 8r3r3

+ + r2r4
+ − 9r6

+

)

+
2r4

+

ℓ̃4

(

7r6 + 38r5r+ + 33r4r2
+ + 20r3r3

+ − 17r2r4
+ − 18rr5

+ − 27r6
+

)

−
12r4

+

ℓ̃6

(

4r8 + 8r7r+ + 3r6r2
+ − 6r5r3

+ − 3r4r4
+ + 5r2r6

+ + 4rr7
+ + 3r8

+

)

−
3r4

+

ℓ̃8

(

8r10 + 16r9r+ + 24r8r2
+ + 32r7r3

+ + 13r6r4
+ − 6r5r5

+

−r4r6
+ + 4r3r7

+ + 9r2r8
+ + 6rr9

+ + 3r10
+

)

]

(3.15)

T (2)(r) = 8r4
+

(

3r2
+ +

6r4
+

ℓ̃2
−

2r+r3

ℓ̃2
+

3r6
+

ℓ̃4
−

2r3
+r3

ℓ̃4
−

4r6

ℓ̃4

)

(3.16)

T (3)(r) = 24r5
+

(

1 +
r2
+

ℓ̃2

)(

r+ +
r3
+

ℓ̃2
+

2r3

ℓ̃2

)

(3.17)

This exhibits the expected thermal behaviour. A useful check of the analysis is to note

that 〈Tµν〉, as given by (3.14), is regular at the horizon r = r+, as
〈

T 0
0(r+)

〉

=
〈

T 1
1(r+)

〉

.

We can also see that in the regime where r, r+ ≪ ℓ̃, we recover Page’s result [25] for the

asymptotically flat Schwarzschild black hole.

This weak coupling result can also be used to consider the behaviour for large black

holes, which was recently considered in [27]. In the regime where r+ ≫ ℓ̃, let us write

r = zr+. In terms of z, (3.14) reads, at leading order,

〈

T̄ µ
ν(z)

〉

=
1

5760π2

1

ℓ̃4z6

[

−3F (z)

(1 + z + z2)2
(

δµ
ν − 4δµ

0δ
0
ν

)

+ 24
(

3 − 2z3 − 4z6
)

δµ
0δ

0
ν

+24
(

1 + 2z3
)

δµ
1δ

1
ν

]

+ O

(

1

r2
+ℓ̃2

)

, (3.18)

where F is a polynomial of order 10, F (z) = 8z10 + · · ·+ 3. Thus, we see that at large r+,

the quantum stress tensor does not become large; the factors of r+ cancel out. This shows

directly that quantum corrections remain under control in this regime, as was argued by

other methods in [27].

4. Discussion

To sum up: We see that the bulk solution can formally be interpreted as a quantum-

corrected black hole on the brane, but the stress tensor involved does not have the expected

– 7 –
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form: it has the peculiar feature that the correction (a renormalization of the cosmological

constant) is independent of the black hole mass. We also computed the weak coupling

stress tensor, which has the expected form.

It is the strong coupling effect that is particularly intriguing: why should the black

hole apparently not radiate at all in our solution? This does not seem to be physically

sensible. This special form at strong coupling is a direct consequence of the fact that the

bulk spacetime is foliated by conformal copies of the Schwarzschild-AdS black hole. This

‘translation invariance’ means that the classical KK graviton modes are not excited in

the background solution, and geometrically the only possibility is renormalization of the

cosmological constant. This is very different from what we would generically expect at

strong coupling, and appears to indicate that the black hole does not have any thermal

radiation associated with it. It also differs from the weak coupling stress-energy tensor,

which has a more complicated form consistent with our physical picture of a radiating black

hole in an AdS ‘box’.

One might therefore ask if we are considering the correct solution. After all, black

hole solutions are known not to be unique in 5D, and it is possible that there is a solution

which is highly nonuniform in the bulk, which nonetheless has the form of a black hole on

its intersection with the brane. The bulk horizon might have the pancake structure of the

Randall Sundrum brane black hole conjectured by [11], or, given that the distance between

the KR branes is finite, it might be a nonuniform horizon between the branes. However, in

either case we have to compare the putative nonuniform solution with the known, stable

static configuration we have used for r+ > ℓ̃. Not only is it difficult to envisage how a

stable bulk horizon could intersect one brane without impinging on the other, but work on

the related set-up of KK black holes in the 5D vacuum [28] indicates that in the equivalent

mass régime, the black string solution is entropically preferred. We therefore believe we

have chosen a good solution.

One possible open issue is whether one should consider a solution not of Einstein

gravity, but of Einstein-Gauss-Bonnet theory. This would introduce inhomogeneities in the

bulk direction, so that even the black string solution would not be of the simple foliated

form. One could then ask if it still exhibited such peculiar features in the dual description.

The main objection to this is that higher order corrections to the Einstein action occur at

O(α′) in the string action, and our strong coupling computation is in the N → ∞, α′ → 0

limit, in which such corrections should have no effect.

Our calculation shows again that there are real questions about the interpretation of

classical bulk solutions as quantum corrected brane solutions. Sufficient puzzles remain

that this will no doubt continue to be a source of lively debate.
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